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This article studies life-cycle costing for a capability needed for the indefinite
future. The two costs considered are reprocurement cost and maintenance and
operations (M&O) cost. The reprocurement price is assumed known, and the
MO costs are assumed to be a known function of the time since last reprocure-
ment, in fact an increasing function. The problem is to choose the optimum
reprocurement time so as to minimize the quotient of the total cost over a repro-
curement period divided by the period. Or one could assume a discount rate and
try to minimize the total discounted costs into the indefinite future. It is shown
that the optimum policy in the presence of a small discount rate hardly depends
on the discount rate at all, and leads to essentially the same policy as in the case
in which discounting is not considered. An algorithm for finding the optimum
reprocurement time is presented as implemented in an MBASIC program.

. Introduction

Suppose that one is planning to provide a capability
into the indefinite future. The initial procurement cost is
given. In addition, the annual maintenance and opera-
tions costs are known and are a nondecreasing function
of the time since the initial procurement. One has the
option of replacing the equipment at the original price
at any time, thus reverting to lower maintenance costs.
However, costs in the future are discounted at a constant
nonnegative rate. The total discounted cost of future
procurements and maintenance and operations costs is
called the Life-Cycle Cost Increment. The idea is to
choose the reprocurement time so as to minimize this
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Life-Cycle Cost Increment. It is shown that as the dis-
count rate approaches zero, the optimum reprocurement
time approaches a limit, as does the minimum Life-Cycle
Cost Increment divided by the discount rate. This ratio
is shown to be a decreasing function as the discount rate
increases. The procurement time limit is the optimum
reprocurement time for zero discount rate, where the
goal is to minimize the Life-Cycle Cost Rate, the average
future expenditure per year. Finally, the limit of the
minimum Life-Cycle Cost Increment divided by the dis-
count rate is the minimum of the Life-Cycle Cost Rate.
An MBASIC program has been designed and used to
define optimum policies when one has the option of
procuring “better” equipment, which perhaps costs more
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but results in lower maintenance and operations costs.
The purpose of this article, then, is to create a framework
for considering life-cycle costing with a discount rate,
and, specifically, to show that the choice of discount rate
does not materially affect optimum policy, but rather
affects only the figure computed for discounted future
costs. This latter cost is essentially given in arbitrary
units, however, and we shall show how the proper units
of life-cycle cost can be found.

The model of this paper is not overly typical of the
DSN, which operates in an atmosphere of changing tech-
nology and new capability. Instead, we assume that we
must provide a capability “forever.” That capability is
provided by a subsystem which costs P dollars to pro-
cure, and will always cost P dollars to procure. (The effect
of inflation will be discussed shortly.)

Now comes the least certain assumption of this article.
We assume that we know the M&O (maintenance and
operations) cost rate for the subsystem (and assume this
cost is independent of any other decision made). More
particularly, the M&O cost rate in dollars/year depends
on the age of the subsystem, ie., the time since it was
last reprocured. This function M(t) is assumed to be non-
decreasing with time, certainly a reasonable assumption.
When M(t) starts getting too large, we would reprocure
at price P and start off again at the initial low M&O
cost M(0).

Now consider the discount rate a, a nonnegative num-
ber. Our model is built so that « = 0 corresponds to not
having a discount rate, and the definition of life cycle

" cost must then change. The discount rate a should repre-
sent the “social discount rate,” the value of money for
social investment. Thus, a might be, say, 2%, but should
not be nearly as high as the inflation rate; that is, it should
not be near 8%. We have assumed the reprocurement
price P is constant forever, and also that M(t) starts off
again at the old M(0), no matter how long we wait to
reprocure. In other words, we have removed inflation
from the picture, which explains the small values of a.
Those who do not like to discount at all will be pleased
to learn that the value of « in the problem considered
here hardly matters (once « is small), and leads to the
same policies as in the case of no discounting.

For mathematical convenience, and because the money
market works that way, we are using “continuous com-
pound interest.” That is, the value of P dollars discounted
time ¢ years in the future is Pe-*. For integer ¢, “classical”
discounting would use P/(1 + «)! instead, which is “an-
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nual discrete discounting.” The relevant comparison is
thus e*! vs (1 + a)'. If discrete discounting is the policy,
but continuous is used for mathematical convenience, a
small discrepancy results. For example, for a = 2% dis-
crete, the correct continuous discount rate, say o', to use
would be 1.98%. For a = 20%, the highest rate consid-
ered in this article, o/ =18.2%. We shall ignore this
distinction from now on, but have mentioned it because
of the Truth in Lending Act.

We assume that we have just paid P$ for a new sub-
system. Let us also assume that we have decided to buy
an identical replacement subsystem every T years; thus
T determines the policy. Note that we can restrict our-
selves to considering only such periodic policies, since
if it is wise to replace after the first T years it is always
wise to do so because every reprocurement starts the
Same process OVer.

When « > 0, the Life-Cycle Cost Increment for policy
determined by T is the total future costs, reprocurement
plus M&O. But when a = 0, we define instead the Life-
Cycle Cost Rate (the other would be infinite) as the total
cost (M&O plus reprocurement) over period T, including
the reprocurement at price P at time T but excluding the
original procurement. This number is then made into a
cost rate by dividing by the period T. It will turn out
that the minimum Life-Cycle Cost Increment, when
multiplied by the discount rate a, approaches the Life-
Cycle Cost Rate as a approaches 0. Thus, the proper
units when discounting should be dollars per year, using
the above normalization. Even though the Life-Cycle
Cost Increment itself is in dollars, those dollars are really
in a sense arbitrary units. This will be made more be-
lievable by our convergence results, to be given below.

Il. Determining Life Cycle Cost

We first need the equation which displays the fact that
if we reprocure at time T, we start over with M(0) as the
maintenance rate. Let C4(T) be the Life-Cycle Cost In-
crement when a > 0. Then

T
C«T) =/ et M(t)dt + e [P+ Co(T)],a >0
0
1)
(the “Renewal Equation”). The e term in the integral
discounts the M&O cost. After one period of length T', we

reprocure at price P and start over (renew) at Life-Cycle
Cost Increment C4T). However, the cost P + Cq(T), be-
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ing deferred T years, is discounted by 7. We solve for
Co{T) to find

CoT) = UT et M(¢) dt -+ e“"tP]/(l —e2t)  a>0.
' )

When o =0, let C,,(T) be the Life-Cycle Cost Rate.
Then straightforward calculation produces

Cio (T) = -1T-<P + / ' M(t)dt). )

Equation (1) shows that C«(T) and C(T) are differ-
entiable functions of T in T > 0:

M(T) — a [P + CuT)]

C'(T) = e ,

a>0. (4)

Likewise, from Eq. (3),

C'(o)(T) — M(T) —TC(O)(T).

(5)
Thus, if C«(T) and C(y(T) have a minimum in T >0
(note that both are + o when T = 0), then the minimum
occurs at a stationary point, one where the derivative is
0. Thus, at a minimum,

Co(T) = MT _ P,a>0; (6)

Coy(T) = M(T). (7)

Define C o)(T) as aCo(T) for a > 0, and call it the “Nor-
malized Life Cycle Cost Increment.” Then (6) and (7)
become

Co(T) = M(T) — aP, 0 =0, (8)

It will be shown in the next section that either C ., has
no stationary point in T > 0 because it decreases forever,
or else has a unique stationary poeint which is the mini-
mum sought for.

Let us stop to study an example, which illustrates the
results of the next section. Let M(T) = kt for t > 0 (k in
dollars/yr?). Then we can evaluate Co(T) and C,)(T)
exactly:

(k/a?) (1 — e — aTeT) + e'P

Cu(T) = — NG
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Coo(T) = %(P + k2T> (10)

Then C ,)(T) has zero derivative, and thus its minimum, at

2P
T(O),min = T > (11)

with associated Minimum Life Cycle Cost Increment

= \/2Pk. 12)

For a =0, we find, differentiating (9), that the mini-
mum Life Cycle Cost Increment C,, ., is achieved at
T o, min, Where

C(O),min

a?P

aTa,mi/,', + e Ta,min =1 + k .

(13)

Equation (13) does indeed have a unique solution in
T > 0, since the function oT + e is increasing in T > 0.
For a — 0, we can show

2P P
Td, min — — + a

A —37 + O(a"’), (14)

so that Ta min —> T (o), min as a —> 0.
And

2Pk
Cn, min <~ T T, (15)

a

$0 0Cq,min = C(ay, min (definition) does indeed converge to
C (o), min- More tedious analysis would even show that
C(a), min 18 C (o), min plus a times a negative constant plus
terms in o or higher, as a— 0, since in fact C 4, min is
shown in the next section to be a decreasing function of
a as o increases, for all a.

lll. Key Results

This section lists key results without proof; proofs are
found in Ref. 1. The proofs are not esoteric, merely using
the fact that ¢** — 1 looks like at as a— 0. It is assumed
that the maintenance cost rate function M(¢) (dollars/yr)
is continuous nondecreasing. Also, P, the purchase price,
is greater than 0. The results below are true for all a > 0,
including o = 0, the case of no discounting.

Result 1: C4)(T) is either decreasing for all T (“mini-
mum at «”) or has a unique minimum Tq .5, with
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minimum C ,(Topt) = Cay.min, Which is positive. For
convenience of writing, we allow c« to be a minimum to
avoid having to separately consider the special case in
which C)(T) decreases forever.

Result 2: Co(T) is decreasing to the left of its mini-
mum and increasing to the right of it.

Result 3: C o)(T) approaches « as T decreases to 0. As
T > o, C(«(T) may or may not be bounded.

The next result is useful in obtaining a convenient
algorithm for finding T op::

Result 4: Co(T) is convex upward to the left of Te opr.

Result 5: To ,p: is increasing in a as a increases, when
T, op: is finite. When it is infinite for one o, it is infinite
for larger «.

Result 6: C ). min is decreasing in a as a increases, and
approaches M(0) as a— o, where M(0) is the mainte-
nance cost rate at time 0.

The following are the two key results of this article.
Result 7 shows that the optimum reprocurement time for
small discount rate a is close to the optimum reprocure-
ment time for zero discount rate. Result 8 shows that the
minimum Normalized Life-Cycle Cost Increment C a), min
for a > 0 approaches the minimum Life-Cycle Cost Rate
C0).min as the discount rate a decreases to 0. Result 8
is the hardest result of this article to prove.

Result 7: Ty opt = To,opt as a— 0.
Result 8: Ca).min—> C(0).min as a—>0.

In fact, Te, opt and C(a),min are continuous functions of
a in the region « > 0, and Results 7 and 8 are the impor-
tant special cases. What they mean is that the optimum
policies for small a are close to the optimum policy for
those who do not discount. The “discounters” get differ-
ent answers from the “nondiscounters” only because they
have failed to normalize Co(Ta, op:) into C(a)(Ta,0pt) by
failing to multiply by a. This normalization brings the
minimum Life-Cycle Cost Increment to the more real
units of dollars/year. The unnormalized Life-Cycle Cost
Increment in dollars is really in arbitrary “a-money units,”
even though the same word “dollars” is used. The results
will be numerically illustrated in a particular instance in
the next section.
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IV. Computing the Optimum

An interactive structured program for demonstration
purposes has been produced in MBASIC according to
the methodology of DSN Standard Practice 810-13, “Soft-
ware Implementation Guidelines and Practices.” The
procedure to find T, o first finds two times on either side
of the optimum. This is easy to do because of Result 2,
since we need only check the slopes—positive slope of
C((T) means T > T opt, negative slope means T < T, opt-
Once we have “trapped” Ta. o5, We converge to it (more
precisely, we find a cycle time which is guaranteed to
produce a cost within 0.5% of C(a) min) by taking ad-
vantage of the convexity Result 4. Full details on the
procedure can be found in Ref. 1.

Figure 1 shows an exact output of the program. The
variable TMAX is the largest cycle we are willing to con-
sider, in this case 12 years—if Ta ,,: > 12 years, we use
12 years as the cycle (as a change from the value 50 years
as declared before changes). The variable FINE is the
quantization, for integration purposes, set as 1/4 year
both for numerical reasons and because 3 months is
considered the minimum time to which such life cycle
policies can respond. This variable is not changed in the
run shown. The variable BUMP is used in the sensitivity
check within the format within the *’ed box—it is 1 year,
unchanged by the user in this run. The variable DELTA,
set at 2% (.02) in the program, is changed in this run to
0.5% (.005); it is the fractional accuracy we guarantee
in Ca).min. The purchase price is $P, entered as 12. Zero
discount rate ALPHA was input. The maintenance cost
rate M(¢) in $/yr is entered as 1+ (X/24)+ [1+ (X/32)] =
1+ X/24 + X2/(24+32). (Here X is time ¢ divided by
FINE (FINE was 1/4) in order to agree with the definition
of the array variable M as indexed from 0 to TMAX/
FINE.) This quadratic function was used as being possi-
bly typical of the as yet untested real world.

The answer then is TOPT = 8 years, with minimum Life-
Cycle Cost Rate $3.61/yr. This value is accurate to 0.5%,
but the accuracy of T, .p¢ is neither specified nor relevant
—we are trying to control costs, not times. We also find that
if we increase the reprocurement time from 8 years to 9
years, the cost rate goes up only 4¢/yr, to 3.65 $/yr. De-
creasing the cycle to 7 years raises the cost rate only 3¢/yr.
Thus, the optimum is rather broad, which is a useful
property. We also print the percent of the cycle costs that
are M&O costs, in this case 58.5% . For the example under
discussion, Fig. 2 graphs C o) (T) vs T to show this broad
minimum. The graph was obtained from a modification
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of the program under discussion. Figure 3 graphs C 4. min
for the above parameters, but with ALPHA varying from
0 up to an outrageous 20% per year. Note that C a),min
decreases from 3.61 $/yr at zero discount rate down to
2.34 $/yr at 20% discount rate. At the more reasonable
2% discount rate, Co2).min is 3.50 $/yr, only 14¢/yr
different. More important, the optimum cycle time Tq, op:
produced by the program is 8 years, from ALPHA = O up
to ALPHA = 0.1, and then fluctuates near 8 years (see
Table 1). If the 8 years of 0 discount rate were used for
2% rate, the C 42y, mi» Would be within 1% of the true
minimum. Even at 20% discount rate, the use of 8 years
instead of the 10.25 years of Table 1 produces an increase
in cost of only 2%, as a run of the program with
BUMP = 2.25 shows. Thus, there appears to be little
reason to use positive discount rates for the particular
infinite-horizon life cycle problem considered in this
article.

V. Allowing Purchase Price to Vary

There are of course situations where one has the option
to lower M&O costs by paying more for the initial pro-
curement (and thus for the reprocurements). ‘Unfortu-
nately, we don’t always know exactly what the tradeoff
is, but, in this section, we shall create an illustration in
which we do know the tradeoff. We then find the best
price P to pay so that when we subsequently minimize
the Life-Cycle Cost Rate, we obtain the overall minimum
Life-Cycle Cost Rate. (But for o > 0, the proper cost to
minimize is P + C(T), or, what gives the same choice of
Pand T, aP + C(T).)

Suppose the tradeoff of purchase price P vs mainte-
nance cost rate M(¢) is given by

M) = t<1 +701-,;>. (16)

For very low P, M(t) is outrageous. As P gets large,
M(t) settles down to ¢, so that very expensive “models”
are not a good buy either. “Freshman Calculus™ tech-
niques show that T, .,(P) is given, for a fixed P, by

2P\
Toon(P) = P52 7) )
with associated C ), min(P) given by

Cunmnt®) = [ 252 (18)
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We seek the minimum of (18) as P varies. It is readily
shown to occur at P = 1 with value C o), pes: given by

C(O),best = 2 (19)

From Eq. (17) with P =1, we find that the best repro-
curement time, T, peys, 1S

To.best =1L (20)

In other words the best overall policy, the one resulting
in minimum Life-Cycle Cost Rate when P is allowed to
vary, is to purchase units costing $1 every (one) year.

We also used the computer program to vary P and find
the overall minimum of C, nix(P). We found that
C(0),vest Was 2 to within 5 decimal places, occurring at
P =1 to within 3 decimal places. It took 11 uses of the
original program to obtain the answer, varying P each
time. Details are omitted.

VI. Future Work

Future areas for investigation suggest themselves from
the preceding sections. The most important is the prob-
lem of how to learn what the maintenance cost rate
function M(t) is. This problem can be considered a
sequential estimation problem, as in Ref. 2.

Unfortunately, the use of a similar approach is cur-
rently hampered by the fact that it is difficult to assign
M&O costs to particular subsystems or assemblies.
Equally important, it is very difficult to tell what the
tradeoff is between procurement price and M&O costs.
For example, we don’t yet know how much to pay for
increased semiautomatic operability of DSN subsystems,
because we do not know in enough detail how the M&O
cost rate function M(¢) is built up.

In another vein, a rational policy on life cycle costing
ought perhaps to take into account availability of the
tracking station or Network. Thus, we could decide to
lower M(t) by increasing the probability of downtime.
Or, for a given acceptable downtime, there would be a
combined procurement specification and reprocurement
time which results in lower overall costs.

Another area of investigation that could prove fruitful
for the DSN involves madeling the M&O cost interactions
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of the various subsystems at a tracking station, acting in
concert. It seems clear that costs of maintenance and
operations are not actually additive by subsystem. Thus,
one may wish to consider a combined policy on procure-
ment intervals that takes total station or network costs
into account. The techniques could even be statistical in
nature for a system the size of a DSN tracking station.

The various problem areas above are indicative of the
kinds of things one might want to know when adopting
a life cycle cost policy, whether for the “infinite horizon”
idealization of this paper or for the case more typical of
much of the DSN, the fixed life cycle case (usually
defined as initial procurement cost plus 10-year undis-
counted M&O cost).
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Tablel. T, ., vSa

a, % T4, opt> yeQrs
0 8.00
05 8.00
1 8.00
1.5 8.25
2 8.00
3 8.25
5 8.00
7.5 8.25

10 9.00
15 9.25
20 10.25
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